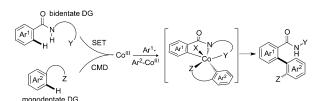


Cross-Coupling

DOI: 10.1002/ange.201607719 Deutsche Ausgabe: Internationale Ausgabe: DOI: 10.1002/anie.201607719

Mixed Directing-Group Strategy: Oxidative C-H/C-H Bond Arylation of Unactivated Arenes by Cobalt Catalysis

Cong Du⁺, Peng-Xiang Li⁺, Xinju Zhu, Jian-Feng Suo, Jun-Long Niu,* and Mao-Ping Song*


Abstract: A mixed directing-group strategy for inexpensive [Co(acac)₃]-catalyzed oxidative C-H/C-H bond arylation of unactivated arenes has been disclosed. This strategy enables the arylation of a wide range of benzamide and arylpyridines effectively to afford novel bifunctionalized biaryls, which are difficult to achieve by common synthetic routes. Two different pathways, namely, a single-electron-transmetalation process (8-aminoquinoline-directed) and a concerted metalationdeprotonation process (pyridine-directed), were involved to activate two different inert aromatic C-H bonds. Moreover, the aryl radicals have been trapped by 2,6-di-tert-butyl-4-methylphenol to form benzylated products. This unique strategy should be useful in the design of other arene C-H/C-H crosscouplings as well.

Biaryls are versatile and important structural motifs in medicinal agents, natural products, advanced materials, and other organic molecules.^[1] In terms of green and sustainable chemistry, employing C-H bonds as potential functional groups has prevailed in recent years. Especially, transitionmetal-catalyzed cross-dehydrogenative C-H/C-H activation arylation has emerged as a more attractive approach to access biaryls.^[2] Despite the tremendous achievements in the last decade, unfortunately, cross-dehydrogenative coupling (CDC) has mainly been restricted to palladium^[3] and rhodium^[4] catalysts with simple arenes as the coupling partners (solvent), and it remains difficult to achieve high regioselectivity on both arene coupling partners.

As a representative of earth-abundant first-row metals, cobalt has exhibited comparable and unique efficiency in C-H functionalization.^[5] Over the past decade, in situ generated low-valent cobalt catalysts have been utilized in C-H arylation of arenes with aryl Grignard reagents, aryl halides, and phenol derivatives in the presence of Grignard reagents as the bases and reductants. [6] However, to the best of our knowledge, no cobalt-catalyzed cross-coupling reaction between two aryl C-H bonds has been developed so far.[7] In contrast, the bidentate directing strategy using the relatively cheap Cp*-free (Cp*= C_5Me_5) CoX_n (n=2, 3) salts as catalysts has become a promising methodology for C-

[*] C. Du, [+] P.-X. Li, [+] Dr. X. Zhu, J.-F. Suo, Dr. J.-L. Niu, Prof. M.-P. Song College of Chemistry and Molecular Engineering Zhengzhou University Kexue avenue 100, Zhengzhou (P.R. China) E-mail: niujunlong@zzu.edu.cn mpsong@zzu.edu.cn

H bond functionalization. [8] Recently, cobalt-catalyzed C(sp²)-H amination and alkoxylation, assisted by a bidentate directing group, was described by our group. [9] Mechanistically, this transformation involves an intermolecular singleelectron transfer (SET) process, [10] which is significantly different from the certified concerted metalation-deprotonation (CMD) process. Additionally, such a CMD process assisted by a monodentate directing group has also been extensively investigated for the [Cp*CoIII] catalysis.[11] Inspired by the aforementioned progress and based on our continuing research on cobalt-catalyzed C-H bond activation, [8g,9] we envisaged that a chemoselective cross-coupling reaction between two different C-H substrates could be achieved by incorporating an appropriate monodentate and bidentate directing group into the two respective arene substrates. The SET and CMD pathways might take place in parallel to form a high-valent cobalt intermediate coordinated by two mixed ligands, and then undergo facile reductive elimination to afford unsymmetrical bifunctionalized biaryls (Scheme 1).

Scheme 1. A new strategy for cobalt-catalyzed oxidative C-H/C-H bond arylation of unactivated arenes. DG = directing group.

Although the above speculation seems feasible, several challenges need to be overcome to achieve this ambitious goal. 1) The reactivity of a cobalt catalyst involving twofold SET and CMD processes in one reaction is unprecedented. 2) It is difficult to achieve a chemoselective cross-coupling reaction while avoiding undesired homocoupling products for the two arenes. 3) The complex geometric structure and multiple coordination sites of the substrate and product may inactivate the cobalt catalyst.

Our optimization studies commenced with identifying a pair of suitable directing groups (see the Supporting Information). After extensive screening of multiple directing groups, we chose the 8-aminoquinoline amide 1a and 2-phenylpyridine (2a) as the model substrates for optimizing the arylation conditions (Table 1). Solvents play an important role in the reaction activity. When HFIP was used as the solvent, the cross-coupling product 3aa was obtained in 30% yield (see the Supporting Information).[12] Replacement of

^[+] These authors contributed equally to this work.

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201607719.

Table 1: Optimization of the cobalt-catalyzed arylation reaction between substrates ${\bf 1a}$ and ${\bf 2a}.^{[a]}$

Entry	Catalyst	Cooxidant	Yield [%]
1	Co(OAc) ₂ ·4 H ₂ O	Mn(OAc) ₂ ·4 H ₂ O	32
2	$Co(OAc)_2 \cdot 4H_2O$	AgOAc	4
3	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_3 \cdot 2H_2O$	9
4 ^[b]	$Co(OAc)_2 \cdot 4H_2O$	_ `	25
5	[Co(acac) ₃]	$Mn(OAc)_2 \cdot 4H_2O$	42
6 ^[c]	[Co(acac) ₃]	$Mn(OAc)_2 \cdot 4H_2O$	61
7 ^[c,d]	[Co(acac) ₃]	$Mn(OAc)_2 \cdot 4H_2O$	74
8 ^[c-e]	[Co(acac) ₃]	Mn(OAc) ₂ ·4 H ₂ O	82

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), [Co-(OAc)₂·4 H₂O] (20 mol%), cooxidant (0.4 mmol), NaH₂PO₄·2 H₂O (0.4 mmol), HFIP (1.0 mL), air atmosphere, 12 h, 120 °C. Yield is that of isolated product. [b] O₂ atmosphere. [c] 90 °C. [d] 1a (0.4 mmol). [e] Mn(OAc)₂·4 H₂O (0.8 mmol). acac = acetylacetonate, HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol.

HFIP with other common solvents, such as THF, DMF, DMSO, and arenes dramatically lowered the reactivity. Various bases and acids were also investigated afterwards and NaH₂PO₄·2H₂O was found to be the optimal choice (entry 1). Oxidants have a significant influence on the crosscoupling product. When either AgOAc or Mn(OAc)₃·2H₂O was used as an oxidant, the reaction was mostly inhibited (entries 2 and 3). Moreover, the reactivity of cobalt could be realized under an oxygen atmosphere (entry 4). As for other catalysts, [Co(acac)₃] showed superior result compared with Co(OAc)₂·4H₂O (entry 5). A slightly improved yield was observed when the temperature was elevated to 90°C (entry 6). Further improvement was achieved by adjusting the amount of 1a and cooxidant (entries 7 and 8), thus affording 3aa in 82% yield. It is noteworthy that negligible homocoupled product (<5%) of 1a and no homocoupled product of 2a were observed (see the Supporting Information).

To assess the generality of this strategy, the scope with respect to the benzamide substrates were firstly explored (Table 2). A variety of substituted benzamides reacted to afford the corresponding biaryls with high chemoselectivity. The para-substituted benzamides bearing both electrondonating and electron-withdrawing groups were compatible with the optimized reaction conditions, thus affording the arylation products in 63-84% yields (3aa-ja). Various functionalities, including halides (3 ea-ha) and carbomethoxy (3ia) were well tolerated, thus providing an opportunity for potential post-transformations. For meta-substituted benzamides (3ka-na) and 2-naphthamide (3qa), the arylation took place at the sterically less-hindered position. Additionally, the strong electron-withdrawing functional group (NO₂) was compatible with the transformation (3 na). The efficiency of the arylation was not impeded by *ortho*-substituents (3 oa,pa).

Table 2: Scope with respect to aromatic amides. [a]

[a] Reaction conditions: 1 (0.4 mmol), 2a (0.2 mmol), [Co (acac)₃] (20 mol%), Mn(OAc)₂·4 H₂O (0.8 mmol), NaH₂PO₄·2 H₂O (0.4 mmol), HFIP (1.0 mL), air atmosphere, 12 h, 90 °C. [b] 1 (0.2 mmol), 2a (0.4 mmol). Py = pyridine.

Di- and trisubstituted amides could also react to deliver the desired products in 60–78 % yields (**3ra-ta**).

Subsequently, the strategy was applied to a variety of 2-arylpyridines (Table 3). Substrates with ortho-, para-, and meta-methoxy groups exhibited similar reactivities (3ab-ad), thus indicating that steric bulk did not significantly affect the reaction efficiency. Halogenated arylpyridines were compatible with the transformation (3ae-ag). Furthermore, we were delighted to find that the unprotected OH in 2h, a group which is frequently problematic for cross-coupling methods, was also tolerated under the optimized reaction conditions (73% yield). For meta-substituted substrates and 2-(naphthalen-2-vl)pyridine, the arylation occurred at the less hindered ortho-position (3ab, 3ai-aj). The reaction of substituted pyridines (2k-m) and other N-based directing groups, such as benzo[h]quinoline (2n) and pyrimidine (2o), were also found to proceed smoothly. Interestingly, benzoxazole bearing an activated C-H bond could successfully be coupled with the amide substrate by deprotonation of the acidic C–H atom under the modified reaction conditions, thus furnishing the heteroarylated product in 32 % yield (3 ap). [13]

Finally, the 8-aminoquinoline auxiliary could be easily removed by the simple base hydrolysis to afford the bifunctional pyridine- and carboxy-containing biaryls 4 (Scheme 2).

To examine the role of cobalt and manganese salts, a sequence of control experiments were performed (for

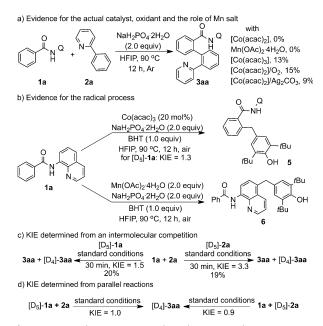
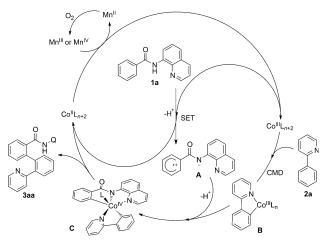

Scheme 2. Removal of the 8-aminoquinoline auxiliary.

Table 3: Scope with respect to arylpyridines.[a]

[a] Reaction conditions: 1a (0.4 mmol), 2 (0.2 mmol), [Co(acac)₃] (20 mol%), Mn(OAc)₂·4 H₂O (0.8 mmol), NaH₂PO₄·2 H₂O (0.4 mmol), HFIP (1.0 mL), air atmosphere, 12 h, 90 °C. [b] 1a (0.2 mmol), 2 (0.4 mmol). [c] Ag₂O (0.2 mmol) instead of Mn(OAc)₂·4 H₂O, 110 °C.


experiment details see the Supporting Information). Under an argon atmosphere, the use of either [Co(acac)₂] or Mn(OAc)₂·4H₂O alone could not promote the reaction, whereas this transformation could occur in the presence of [Co(acac)₃] without oxidants. When either Ag₂CO₃ or an oxygen atmosphere was introduced, the desired arylation product was obtained in the presence of [Co(acac)₂]. These facts indicate that the reaction process probably initiates from a cobalt(III) species and oxygen (from air) should be the actual oxidant (Scheme 3a). The addition of a radical quencher, either 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 2,6-di-tert-butyl-4-methylphenol (BHT), or pbenzoquinone (BQ), under standard reaction conditions, suppressed the formation of 3aa. Notably, the utilization of BHT led to trapping of aryl radicals, thus resulting in the formation of two regioisomers, 5 and 6, [12] which might result from different SET pathways initiated by either [Co(acac)₃] or Mn(OAc)₂·4H₂O catalysts. The treatment of **1a** with BHT in the presence of [Co(acac)₃] afforded the coupled product 5 at the ortho-position of benzamide, while the reaction with Mn(OAc)₂·4H₂O led to the quinolinyl coupled product 6 at C5. These data suggest that the aryl radical is generated by a cobalt(III) catalyst and manganese(II) is a cooxidant. Furthermore, a kinetic isotope effect (KIE) value of 1.3 was observed in the reaction of 1a and [D₅]-1a with BHT. These results indicate the C-H activation of 1a could occur by

Scheme 3. Control experiments and mechanistic studies.

a SET mechanism (Scheme 3b). Competitive coupling of 2a with an equimolar mixture of $\mathbf{1a}$ and $[D_5]$ - $\mathbf{1a}$ at a low conversion gave a KIE value of 1.5. Likewise, when an equimolar mixture of 2a and [D₅]-2a was used in the presence of 1a, a notable KIE value of 3.3 was obtained (Scheme 3c). Meanwhile, the KIE values (1.0 for 1a, 0.9 for 2a) observed in parallel reactions suggest that the C-H bond cleavage of 1a and 2a is not involved in the rate-limiting step (Scheme 3d).

Based on the above mechanistic studies and relevant literature, [5b,10] we propose that the cobalt catalyst plays a twofold role in the oxidative C-H/C-H bond arylation (Scheme 4). In the first catalytic cycle, an intermolecular SET

Scheme 4. Proposed reaction mechanism.

process between $\mathbf{1a}$ and $\mathbf{Co}^{\mathrm{III}}$ provides the intermediate \mathbf{A} and regenerates Co^{III} in the presence of Mn(OAc)₂·4H₂O and oxygen. In the second catalytic cycle, directed C-H activation through a CMD process produces the intermediate **B**, which is attacked by deprotonated A to form the key intermediate

13771

Zuschriften

species **C**. The cross-coupling product **3aa** is obtained by reductive elimination and Co^{III} is regenerated by the oxidant (O_2) and cooxidant $(Mn(OAc)_2\cdot 4H_2O)$.^[14]

In conclusion, we have successfully demonstrated Cp*free cobalt-catalyzed oxidative C-H/C-H bond arylation of unactivated arenes, in which the commercially available [Co(acac)₃] was utilized as the catalyst and Mn(OAc)₂·4H₂O as the cooxidant to accomplish the unsymmetrical biaryls. The significant aspects of our work are: 1) Inert C-H bonds between two arenes could be identified by the same cobalt catalyst through SET and CMD processes. 2) High selectivity, mild temperature, and operational convenience are the key features for the cross-coupling reaction. 3) A variety of functional groups are compatible with the current methodology which affords novel bifunctionalized biaryls. This mixed directing-group strategy should provide unique insights for a synthetically valuable direct arylation. Extension of this strategy to other oxidative C(sp³)-H/C(sp²)-H couplings and asymmetric reactions is currently in progress in our laboratory.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Nos. 21502173, 21272217) and the Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521316002).

Keywords: arylation \cdot biaryls \cdot cross-coupling \cdot cobalt \cdot reaction mechanisms

How to cite: Angew. Chem. Int. Ed. **2016**, 55, 13571–13575 Angew. Chem. **2016**, 128, 13769–13773

- [1] For selected reviews on aryl-aryl bond formation, see: a) G. P. McGlacken, L. M. Bateman, *Chem. Soc. Rev.* 2009, 38, 2447–2464; b) I. Hussain, T. Singh, *Adv. Synth. Catal.* 2014, 356, 1661–1696.
- [2] For selected reviews on CDC reactions, see: a) C.-J. Li, Acc. Chem. Res. 2009, 42, 335-344; b) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292.
- [3] For selected examples, see: a) K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2007, 129, 11904–11905; b) B.-J. Li, S.-L. Tian, Z. Fang, Z.-J. Shi, Angew. Chem. Int. Ed. 2008, 47, 1115–1118; Angew. Chem. 2008, 120, 1131–1134; c) Y. Wei, W. Su, J. Am. Chem. Soc. 2010, 132, 16377–16379; d) X. Wang, D. Leow, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 13864–13867; e) J. Karthikeyan, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 9880–9883; Angew. Chem. 2011, 123, 10054–10057; f) D. Sun, B. Li, J. Lan, Q. Huang, J. You, Chem. Commun. 2016, 52, 3635–3638; g) S.-J. Lou, Y.-J. Mao, D.-Q. Xu, J.-Q. He, Q. Chen, Z.-Y. Xu, ACS Catal. 2016, 6, 3890–3894.
- [4] a) J. Wencel-Delord, C. Nimphius, F. W. Patureau, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 2247 2251; Angew. Chem. 2012, 124, 2290 2294; b) X.-S. Zhang, Y.-F. Zhang, Z.-W. Li, F.-X. Luo, Z.-J. Shi, Angew. Chem. Int. Ed. 2015, 54, 5478 5482; Angew. Chem. 2015, 127, 5568 5572; c) K. Matsumoto, M. Yoshida, M. Shindo, Angew. Chem. Int. Ed. 2016, 55, 5272 5276; Angew. Chem. 2016, 128, 5358 5362.

- [5] For recent reviews, see: a) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; b) D. Wei, X. Zhu, J.-L. Niu, M.-P. Song, ChemCatChem 2016, 8, 1242-1263.
- [6] For recent reviews on the low-valent cobalt-catalyzed C-H bond activation, see: a) L. Ackermann, J. Org. Chem. 2014, 79, 8948 – 8954; b) K. Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208 – 1219.
- [7] Cobalt-promoted dimerization of arenes: a) L. Grigorjeva, O. Daugulis, Org. Lett. 2015, 17, 1204–1207; b) Y. Xie, D. Xu, W.-W. Sun, S.-J. Zhang, X.-P. Dong, B. Liu, Y. Zhou, B. Wu, Asian J. Org. Chem. 2016, 5, 961–965.
- [8] For selected examples of Cp*-free cobalt-catalyzed C-H bond functionalization, see: a) L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209-10212; Angew. Chem. 2014, 126, 10373-10376; b) W. Ma, L. Ackermann, ACS Catal. 2015, 5, 2822-2825; c) X. Wu, K. Yang, Y. Zhao, H. Sun, G. Li, H. Ge, Nat. Commun. 2015, 6, 6462; d) O. Planas, C. J. Whiteoak, A. Company, X. Ribas, Adv. Synth. Catal. 2015, 357, 4003-4012; e) J. Zhang, H. Chen, C. Lin, Z. Liu, C. Wang, Y. Zhang, J. Am. Chem. Soc. 2015, 137, 12990 - 12996; f) D. Kalsi, B. Sundararaju, Org. Lett. 2015, 17, 6118-6121; g) L.-B. Zhang, X.-Q. Hao, Z.-J. Liu, X.-X. Zheng, S.-K. Zhang, J.-L. Niu, M.-P. Song, Angew. Chem. Int. Ed. 2015, 54, 10012-10015; Angew. Chem. 2015, 127, 10150-10153; h) R. Mei, H. Wang, S. Warratz, S. A. Macgregor, L. Ackermann, Chem. Eur. J. 2016, 22, 6759-6763; i) V. G. Landge, G. Jaiswal, E. Balaraman, Org. Lett. 2016, 18, 812-815; j) P. Gandeepan, P. Rajamalli, C.-H. Cheng, Angew. Chem. Int. Ed. 2016, 55, 4308-4311; Angew. Chem. 2016, 128, 4380-4383; k) S. Maity, R. Kancherla, U. Dhawa, E. Hoque, S. Pimparkar, D. Maiti, ACS Catal. 2016, 6, 5493-5499.
- [9] a) L.-B. Zhang, X.-Q. Hao, S.-K. Zhang, Z.-J. Liu, X.-X. Zheng, J.-F. Gong, J.-L. Niu, M.-P. Song, Angew. Chem. Int. Ed. 2015, 54, 272–275; Angew. Chem. 2015, 127, 274–277; b) L. B. Zhang, S.-K. Zhang, D. Wei, X. Zhu, X.-Q. Hao, J.-H. Su, J.-L. Niu, M.-P. Song, Org. Lett. 2016, 18, 1318–1321.
- [10] X.-K. Guo, L.-B. Zhang, D. Wei, J.-L. Niu, Chem. Sci. 2015, 6, 7059-7071.
- [11] For selected examples of [Cp*CoIII]-catalyzed C-H bond functionalization, see: a) T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, Chem. Eur. J. 2013, 19, 9142-9146; b) T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, Angew. Chem. Int. Ed. 2013, 52, 2207-2211; Angew. Chem. 2013, 125, 2263-2267; c) D.-G. Yu, T. Gensch, F. de Azambuja, S. Vásquez-Céspedes, F. Glorius, J. Am. Chem. Soc. 2014, 136, 17722-17725; d) E. Ozkal, B. Cacherat, B. Morandi, ACS Catal. 2015, 5, 6458-6462; e) J. R. Hummel, J. A. Ellman, J. Am. Chem. Soc. 2015, 137, 490-498; f) B. Sun, T. Yoshino, M. Kanai, S. Matsunaga, Angew. Chem. Int. Ed. 2015, 54, 12968 - 12972; Angew. Chem. 2015, 127, 13160 -13164; g) J. Park, S. Chang, Angew. Chem. Int. Ed. 2015, 54, 14103-14107; Angew. Chem. 2015, 127, 14309-14313; h) M. Sen, B. Emayavaramban, N. Barsu, J. R. Premkumar, B. Sundararaju, ACS Catal. 2016, 6, 2792-2796; i) D. Zell, Q. Bu, M. Feldt, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 7408-7412; Angew. Chem. 2016, 128, 7534-7538; j) Y. Liang, N. Jiao, Angew. Chem. Int. Ed. 2016, 55, 4035-4039; Angew. Chem. 2016, 128, 4103-4107; k) S. Prakash, K. Muralirajan, C.-H. Cheng, Angew. Chem. Int. Ed. 2016, 55, 1844-1848; Angew. Chem. 2016, 128, 1876-1880; l) R. Kuppusamy, K. Muralirajan, C.-H. Cheng, ACS Catal. 2016, 6, 3909 – 3913; m) K. Muralirajan, R. Kuppusamy, S. Prakash, C.-H. Cheng, Adv. Synth. Catal. 2016, 358, 774–783; n) T. Gensch, F. J. R. Klauck, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 11287-11291; Angew. Chem. 2016, 128, 11457-11461.
- [12] CCDC 1497948 (3aa), 1497950 (5) and 1497951 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Zuschriften

- [13] For copper-mediated direct C-H/C-H couplings of amides with acidic azoles assisted by 8-aminoquinoline, see: a) M. Nishino, K. Hirano, T. Satoh, M. Miura, *Angew. Chem. Int. Ed.* **2013**, *52*, 4457–4461; *Angew. Chem.* **2013**, *125*, 4553–4557. During the preparation of this manuscript, the group of You reported a cobalt-catalyzed heteroarylation of amides with acidic azoles assisted by the same bidentate directing group: b) G. Tan, S. He, X. Huang, X. Liao, Y. Cheng, J. You, *Angew. Chem. Int. Ed.* **2016**, *55*, 10414–10418; *Angew. Chem.* **2016**, *128*, 10570–10574.
- [14] At present, other pathways could not be completely excluded, including: 1) two C–H activation steps occurring within a single cobalt center in a sequential manner. 2) Co^I/Co^{III} cycle (see Ref. [13b]): 1a undergoes an intramolecular SET process and an intermolecular SET process to form a cyclometalated Co^{III} intermediate.

Received: August 9, 2016

Published online: September 21, 2016